
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

All About Numbers (not in the book)

Appendix 2

Numbers

On a computer, the basic building block for a number is the BYTE

• 8 bits

• Can range from 00000000 to 11111111

• Can be signed or unsigned

Numbers – byte sizes

Each variable is made up of a number of bytes, and this defines the
range of numbers possible.

We can obtain the size using the sizeof function in C

Some machines will have the same size for variables that on other
machines will be different (especially short int)

Numbers - range

The number of bytes used defines (in the case of integer types) the range of
numbers that can be stored:

• 2 Byte (16 bits) has the range
• 0 to (216 – 1) or 0 to 65535 (unsigned)
or
• (0 – 215) to (215 –1) or -32768 to 32767 (signed)

Numbers - limits

The limits of a variable are machine specific (with the possible exception
of char) as they depend on the number of bytes used for storage

With each machine/compiler is shipped a file ‘limits.h’ which has the
permissible range

Decimal numbers

1056.2458

What is this called?

What do these numbers represent?

What are their values?

Fixed point numbers (1)

A method of representing fractions using binary numbers

Fixed point representation of fractions:

• In a fixed point representation, the binary point is understood to
always be in the same position. The bits to the left represent the
integer part and the bits to the right represent the fraction part :

• The integer parts go as 2n (1,2,4,8 etc)

• The fraction parts go as 2-n (0.5, 0.25, 0.125 etc) . The overall
value is formed using a sum of these.

Fixed point numbers (2)

Example:

A fixed point system uses 8-bit numbers. 4

bits for the integer part and 4 bits for the

fraction:

What number is represented by 00101100?

Fixed point numbers (3)

Example:

A fixed point system uses 8-bit numbers. 4 bits for the integer part

and 4 bits for the fraction:

What number is represented by 00101100?

8 4 2 1 0.5 0.25 0.125 0.0625

0 0 1 0 1 1 0 0

Fixed point numbers (4)

Example:

A fixed point system uses 8-bit numbers. 4 bits for the integer part

and 4 bits for the fraction:

What number is represented by 00101100?

8 4 2 1 0.5 0.25 0.125 0.0625

0 0 1 0 1 1 0 0

NOTE : The headings for the fraction part are divided by 2 successively to the right...

 The number 00101100 represents the number 2.75.

Fixed point numbers (5)

Example:

 Converting to Fixed Point – there is an easy way !

EG. 56.78125

Stage 1 : Integer part: easy

Sign 64 32 16 8 4 2 1

0 0 1 1 1 0 0 0

Fixed Point Numbers (56.78125)

Example: - fraction part

0 . 7 8 1 2 5
x 2

(1) . 5 6 2 5 0

x 2

(1) . 1 2 5 0 0

x 2

(0) . 2 5 0 0 0

x 2
(0) . 5 0 0 0 0

x 2
(1) . 0 0 0 0 0

You keep multiplying,

ignoring the value in

brackets until you get

zero or run out of bits to

use

So reading down we get

11001

So final answer is

00111000 11001000

Fixed Point Numbers - Example

Your Turn :

Convert the value 25.3 to a fixed point representation,

 8 bit mantissa, 8 bit exponential

Fixed Point Numbers – Solution (1)

Example: - integer part

0 0011001
s 25

Fixed Point Numbers – Solution (2)

Example: - fraction part

0 . 3 0

(0) . 6 0

(1) . 2 0

(0) . 4 0

(0) . 8 0

(1) . 6 0

(1) . 2 0

(0) . 4 0

(0) . 8 0

Fixed Point Numbers – Solution (3)

Example: - fraction part

0 . 3 0

(0) . 6 0 0.5

(1) . 2 0 0.25

(0) . 4 0 0.125

(0) . 8 0 0.0625

(1) . 6 0 0.03125

(1) . 2 0 0.015625

(0) . 4 0 0.0078125

(0) . 8 0 0.00390625

01001100

= 0.25 + 0.03125 + 0.015625

= 0.296575

Not exactly 0.3!

Answer: 0 0011001 01001100

 s 25 . 3

Limitations of fixed point representation

Fixed window limits representation of both very large and very
small numbers

Prone to loss of precision when two large numbers are divided.

Scientific notation

Most common solution is to use scientific notation with a base and
exponent:

▪123.456 -> 1.23456 x 102 in decimal

▪789.abc -> 7.89abc x 162 in hex

▪1010.110 -> 1.010110 x 23 in binary

▪Giving a sliding scale of precision to maximise
precision for both very large and very small numbers

Floating Point Numbers

These are held using the IEEE 754 Floating Point Model which has 3
components:

• Sign of mantissa – 0 for positive number, 1 for negative

• Biased exponent – addition of a bias enables both positive and
negative exponents to be represented

• Normalised mantissa – part of number in scientific notation giving the
significant digits. In binary this must be 0 or 1 so a normalised
mantissa has 1 to the left of the decimal

• These may be single or double precision

Single and Double Precision Floating Point Numbers

https://www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/

Bias = 127

Bias = 1023

https://www.geeksforgeeks.org/ieee-standard-754-floating-point-numbers/

In summary

1. The sign bit is 0 for positive, 1 for negative.

2. The exponent base is two.

3. The exponent field contains 127 plus the true exponent for
single-precision, or 1023 plus the true exponent for double
precision.

4. The first bit of the mantissa is typically assumed to be 1,
yielding a full mantissa of 1.f, where f is the field of fraction
bits.

https://steve.hollasch.net/cgindex/coding/ieeefloat.html

https://steve.hollasch.net/cgindex/coding/ieeefloat.html

Convert 25.3 to single precision floating point binary (1)

▪ 25 = 11001

▪ 0.3 = 010011001100110011… 0 . 3 0

(0) . 6 0 0.5

(1) . 2 0 0.25

(0) . 4 0 0.125

(0) . 8 0 0.0625

(1) . 6 0 0.03125

(1) . 2 0 0.015625

(0) . 4 0 0.0078125

(0) . 8 0 0.00390625

This section will repeat

Convert 25.3 to single precision floating point binary (2)

25 = 11001

0.3 = 010011001100110011…

25.3 = 11001.010011001100110011

 = 1.10010100110011001100110 x 24

Normalised mantissa = 10010100110011001100110 (23 bits)

 Sign = 0

 Biased exponent = 127 + 4 = 131

 = 10000011

Single precision is: 0 10000011 10010100110011001100110

It’s not actually 25.3!

https://www.h-schmidt.net/FloatConverter/IEEE754.html

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floating point numbers

This representation however has limitations:

• Even with a 23 bit mantissa some numbers can appear the same

• We can extend to double precision (51 bit mantissa, 12 bit
exponent) but we can still have inaccuracies

• Adding very large to very small numbers can cause considerable
problems
• https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

• Care should be taken with comparisons

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Variable Selection

We aim to use the most suitable variable for the type of
number we are storing

The choice of variable has consequences both for overall
memory usage and speed of calculation

Integer mathematics is considerably faster than floating point
calculations.

Byte ordering (1)

In an ideal world, all machines would use the same byte size for
variables and would arrange the bytes in the same way

However… (as mentioned when we discussed binary files)

Byte ordering (2)

Different machines arrange the bytes used to make a numbers using
one of two ordering types

• Big endian – high order byte comes first
• Little endian – low byte comes first

So for a two byte integer
• Big Endian - High byte, low byte
• Little Endian - Low byte, high byte

• For more information: https://developer.ibm.com/articles/au-
endianc/

https://developer.ibm.com/articles/au-endianc/
https://developer.ibm.com/articles/au-endianc/

Project Planning Feedback

Project Planning Assignment Feedback

Generally very good planning ☺

• Don’t hard code the shape list – it is defined by the shapes in the file and

these could change

• There was generally a lack of detail about how the shapes would be stored

• Many had missed that the pen up/down data needs to be stored as well as

the x/y coordinates

• There was nothing in the brief to say that the grid size was an integer

Flowcharts

• Try to keep the main flow of the program moving vertically down the page

• Many flowcharts didn’t include checking for success opening file

• Some checked in a function and returned an appropriate value but

then didn’t do anything with this in the calling program

• Many flowcharts showed function calls but didn’t include the flowchart for

the functions

• Don’t have crossing lines in the flowchart

• Always use a diamond box for decisions

• Make sure the outcome (yes/no, true/false) is shown on the exits from the

decision boxes

• Only decision boxes should have multiple exits

Data Types

• The ‘Data Type’ should give the actual data type, eg int, float*, struct Shape

• Where structures are defined, give the actual definition and the data items

that are stored within it

• The rationale should include the reason why you have chosen a given data

type, e.g. int for pen up/down as it can only take integer values.

Test Data

This is probably the section which completed least well.

• Be precise with the test data

• Give the actual data that would be passed into the function with the resulting

output

• eg,

• Ideally, there should be a test to cover each path through the program

Function Test Case Input Expected Output

ReadFile() Invalid file “nonexistent.txt” Returns 0

January Exam

Exam Information

Exam weighting:

• Computer Engineering 40%

• Two questions

• These will be similar in length to previous years but there will only be

two instead of three

• Mechatronics 60%

• Programs will be developed using VSCode on the Engineering Virtual

Desktop.

• Upload program answers to Moodle

Accessing the Engineering Virtual Desktop

The computer engineering section of the January exam will require you to develop programs using

VSCode. In order to access this from all exam rooms you will need to use the software via the

Engineering Virtual Desktop.

Please make sure that you can access the Engineering Virtual Desktop (instructions are given here:

https://www.nottingham.ac.uk/dts/communications/remote-working/virtual-desktop.aspx).

Also make sure that you can open VSCode and create and compile a C program.

There is a submission box on Moodle in the section Test access to VSCode on Engineering Virtual

Desktop

Please upload a file from the Virtual Desktop to this submission box so that we know you are ready to

sit the exam.

https://www.nottingham.ac.uk/dts/communications/remote-working/virtual-desktop.aspx
https://moodle.nottingham.ac.uk/course/view.php?id=139306#section-18
https://moodle.nottingham.ac.uk/course/view.php?id=139306#section-18

Hope you enjoyed the module!

https://bluecastle-uk-surveys.nottingham.ac.uk

Please take a few minutes to fill in the SEM survey

https://bluecastle-uk-surveys.nottingham.ac.uk/

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Appendix 2
	Slide 3: Numbers
	Slide 4: Numbers – byte sizes
	Slide 5: Numbers - range
	Slide 6: Numbers - limits
	Slide 7: Decimal numbers
	Slide 8: Fixed point numbers (1)
	Slide 9: Fixed point numbers (2)
	Slide 10: Fixed point numbers (3)
	Slide 11: Fixed point numbers (4)
	Slide 12: Fixed point numbers (5)
	Slide 13: Fixed Point Numbers (56.78125)
	Slide 14: Fixed Point Numbers - Example
	Slide 15: Fixed Point Numbers – Solution (1)
	Slide 16: Fixed Point Numbers – Solution (2)
	Slide 17: Fixed Point Numbers – Solution (3)
	Slide 18: Limitations of fixed point representation
	Slide 19: Scientific notation
	Slide 20: Floating Point Numbers
	Slide 21: Single and Double Precision Floating Point Numbers
	Slide 22: In summary
	Slide 23: Convert 25.3 to single precision floating point binary (1)
	Slide 24: Convert 25.3 to single precision floating point binary (2)
	Slide 25: It’s not actually 25.3!
	Slide 26: Floating point numbers
	Slide 27: Variable Selection
	Slide 28: Byte ordering (1)
	Slide 29: Byte ordering (2)
	Slide 30: Project Planning Feedback
	Slide 31: Project Planning Assignment Feedback
	Slide 32: Flowcharts
	Slide 33: Data Types
	Slide 34: Test Data
	Slide 35: January Exam
	Slide 36: Exam Information
	Slide 37: Accessing the Engineering Virtual Desktop
	Slide 38: Hope you enjoyed the module!

